Vectorisation par nanobodies (VHHs) Supramolecular Heterodimer Assembly for Nanoparticles Functionalization

NSTITUT DE CANCÉROLOGIE

STRASBOUR

EUROPE

Sébastien Harlepp, Nanotranslational laboratory Institut de cancérologie Strasbourg Europe Institut du Médicament Strasbourg

Introduction

Therapeutic target

Introduction

Therapeutic Antibodies

Why wanting to go for fragments or VHH

- Lower cost
- Higher affinity
- More versatility due to biotechnological advances such as VHH phage display

Introduction VHH Phage display

VHH Phage display

Advantages

- Fast screening for the most efficient VHH sequence
- Possibility to fuse the sequence with other proteins
- Possibility to Tag the sequence for further chemical modifications

Introduction

Why nanoparticle encapsulation is of utmost importance for drug delivery

6

The NP material impacts the tumor uptake post-biofunctionalization

Interest of Antibody fragments (VHH)

Same efficiency versus full mAb But lower size

Orientation of the VHH linked to Nanoparticle matters

Efficiency of the VHH is highly dependent on the orientation

Therefore : need to think about

- Orientation
- Reproducibility of the synthesis
- Versatility of the targeting
- Modularity in the choice of the NP to address either therapeutic effects or diagnosis (Theragnostic)

The ideal construction : Lego

Schematic representation

Template of versatile targeting nanoparticles:

Components of the nanoparticle:

Organic or inorganic nanoparticle

С КЗ ЕЗ

Self assembling peptides derived from p53 self assembly tetramer

Single domain antibody (VHH)

Our ideal construction : Use of supramolecular assemblies

The E3-VHH building block

The E3-VHH building block

No loss of affinity Keeps specificity

Building of liposome based functionalized nanoparticle :

Liposome@K3-E3@VHH characterization

In vitro specificity of the nanoparticles

Better in vitro binding of the targeted liposome

In vitro specificity of the nanoparticles

ICANS

Keeping the specificity by changing the nanoparticle Targeting cancer and immune cell lines

In vivo experiment on mouse model

In vivo experiment on mouse model

Same behaviour for the targeted and non-targeted liposomes

In vivo studies on HER2+ breast cancer mouse model

Better tumour retention of targeted nanoparticle

Ex vivo studies on HER2+ breast cancer mousee model

CANS

Better tumour penetration of targeted liposomes

Conclusion and perspectives on targeting tumor cells

Conclusion:

- Library of nanoparticle
- Library of VHH (targeted receptors)
- In vitro and in vivo proof of binding

Perspectives:

- Targeting of immune cells
- Bi specific approach
- pDC NP

Follain G., et al. Nature Review Cancer 2020

Screening blood samples Looking for CTCs

Interaction of Cy5.5@E3@VHH/K3@Nanoparticle with PBMC

		E3 dye(200	0nM)
		US	
10 ⁻¹	10 ¹	10 ³ 10 ⁵]
	B1-A :	: FITC-A	

Single Cells 30028 Single Cells 30123

PBMC is not reacting with Dye E3-VHH.

Sample Name	Subset Name	Count	Median : B1-A		Sample Name
2023-03-12_PBMC SG113 0.1.0001.fcs	Single Cells	30026	20.1		2023-03-12_PBMC SG113 0.2.0001.fc
2023-03-12_PBMC US.0001.fcs	Single Cells	30123	24.5		2023-03-12_PBMC US.0001.fcs

			Comple Manua	Colored Marrie	6	Madley Di A
Subset Name	Count	Median : B1-A	Sample Name	Subset Name	Count	Median : BI-A
Subset mane	count	meanan . Di A	2022 02 12 PRMC \$C112 0 5 0001 fee	Single Colls	20006	26.4
Single Cells	30028	26.4	 2023-03-12_PBMC 30113 0.3.0001.05	single cens	30000	20.4
single cens	30020	20.4	2022-02-12 RBMC US 0001 fee	Single Colls	20122	24 5
Single Cells	20122	245	 2023-03-12_PBMC 03.0001.105	single cens	20122	24.3
Single Cells	20122	24.3				

PBMC vs HCC ratio to find minimum detectable range

ICANS

Conclusion:

- Library of nanoparticle
- Library of VHH (targeted receptors)
- In vitro and in vivo proof of binding targeting
- Pretargeting for diagnosis –specific and no dependancy on the carrier

Perspectives:

- Targeting of immune cells
- Bi specific approach
- pDC@NP@immune cells
- Nanocarrier with high signal/noise ratio for the diagnosis

Acknowledgements

- Pr. PIVOT Xavier
- Pr. DETAPPE Alexandre
 DRAUSSIN Julien
- Dr. GASSER Adeline
- Dr. BANERJEE Mainak
- Dr. ZHU Chen
- Dr COUBEZ Xavier

- - JACQUOT Guillaume
 - COURSEYRE Manon
 - GHOSH Shayamita
 - LOPEZ Pedro •

Collaborations:

IGBMC: Dr DONZEAU Mariel

Team Nanochemistry and Bioimaging:

- Dr KLYMCHENKO Andrey
 - GUPTA Tanushree

Institut Charles Sadron:

Dr SCHMUTZ Marc •

Centre Georges-François Leclerc:

Dr MIRJOLET Céline

