

Vectorisation de nanoparticules par anticorps monoclonaux Functionalization of nanoparticles with monoclonal antibodies

Alexandre Detappe, PhD Nanotranslational laboratory – ICANS Affiliate Member, Institut Pluridisciplinaire Hubert Curien, CNRS UMR7178 ITUT DE CANCÉROLOGIE Institut du Médicament Strasbourg

EUROPE

www.detappelab.com

Disclosure

- Co-founder: Recobia Therapeutics; TherO2; TMAD; NH Theraguix
- Scientific Board Member: Syndivia; Biper Therapeutics; PearlBiosystem
- Consulting: Nano-H; General Inception; Leaf Pharmaceuticals; Nickl Therapeutics; Seraphym; Dice; Ceptur Therapeutics; Poly-Dtech

What is a targeted therapy?

Biomarker	Molecule	IndicationMuta ti
Mutation KRAS	Cetuximab/ Panitumumab	Colorecatal
Mutation EGFR	Gefitinib/Erloti nib	Lung
Fusion EML4- ALK	Crizotinib	Lung
Fusion cKIT	Imatinib	GIST
Amplification HER2	Trastuzumab/ Lapatinib	Breast

Antibody drug conjugates (ADCs)

Antibody backbones

- IgG isotypes
- Possibility to be conjugated
- FcγRn-binding

Type of linkers

- Cleavable (acid sensitive, esterase sensitive, peptide-based)
- Non-cleavable

Payload

- Auristatins (Brentuximab vedotin)
- Chalicheamicin (Gemtuzumab ozogamicin)
- Emtasine (Trastuzumab emtasine)
- Topoisomerase I inhibitors (Trastuzumab deruxtecan)
- *etc.*

Various strategies can be employed to generate ADCs

Lysines

- + Covalent
- + Easy to produce
- Non-specific conjugation
- Batch to batch variations

Engineered cysteines

- + Covalent
- + Site specific
- Difficult to produce

Reduced internal disulfide bonds

- +/- Covalent and non-covalent
- + Site specific
- + Easy-ish to produce

Various strategies can be employed to generate ADCs

Various strategies can be employed to generate ADCs

- 12 ADCs have been approved by the FDA
- Multiple multi-billion partnerships established over the last 5 years

Drug release strategy for ADC

Could we improved ADC efficiency? Our hypothesis

To Improve therapeutic efficacy

- Reduction of the DAR seems to lead to better tumor penetration due to lower modification of the mAb

- Reduction of the DAR seems to lead to higher amount of mAbs that can be administered to reach the MTD

(Cilliers et al. AAPS J 2026, Menezes et al. AAPS J 2020, L D Bever et al. Bioconjugate Chem 2023)

-- Startups are developing novel linker strategies to generate DAR1 ADCs and are engineering novel linker types for multi-drug DAR1 ADCs (Syndivia, ProfoundBio, Ceptur TX, *etc*.)

Do we have alternatives ?

Classical ADCs

- + Half-life in the body
- + Controlled release
- +/- Site specific
- Drug loading capacity
- Batch to batch variation

Clinical routine

- + Half-life in the body
- + Controlled release
- + Drug loading capacity
- +/- Site specific
- Batch to batch variation

Clinical development (*Profoundbio; Syndivia; Ceptur Tx, etc.*)

Do we have alternatives ?

Classical ADCs

- + Half-life in the body
- + Controlled release
- +/- Site specific
- Drug loading capacity
- Batch to batch variation

Clinical routine

Improved linkers for ADCs

- + Half-life in the body
- + Controlled release
- + Drug loading capacity
- +/- Site specific
- Batch to batch variation

Clinical development (*Profoundbio; Syndivia; Ceptur Tx, etc.*)

Antibody-conjugated nanoparticles

- + No B2B variations with fragments
- + Controlled release
- + Drug loading capacity
- + Site specific with fragment
- +/- Half-life in the body dictated by the NPs

Our lab work

Digging into the nanomedicine world

Some real limitations?

LATEST TOPICS - MAGAZINE - COLLECTIONS - PODCASTS CHEMPICS JOBS Q

NANOMEDICINES

Does nanomedicine have a delivery problem?

Experts debate controversial paper that suggests delivery efficiencies for cancer nanomedicines are low and not improving

by Michael Torrice

(f) 💿 🎔

BIND-014 nanoparticles target tumors actively through small molecules (blue) that can blnd to proteins on cancer cells or on the blood vessels feeding tumors. The polymer (gray) particles encapsulate anticancer drugs (red) such as docetaxel.

> ancer drugs don't discriminate. They kill all cells, not just the cancerous ones. So drugmakers often look for ways to minimize how much of a chemotherapy drug ends up in healthy tissue while still delivering sustained high levels to tumors.

CANCER NANOMEDICINE

Just dose it

A dose threshold of one trillion nanoparticles in mice has been discovered and is shown to be crucial for overwhelming the nanoparticle uptake kinetics of liver Kupffer cells and for ensuring efficient nanoparticle delivery into solid tumours upon intravenous administration.

Twan Lammers

Nanoparticle therapy enhancement

a Nanoparticle dosing in the clinic

- 0.9 × 10¹⁵ NK105 (missed clinical endpoints)
- 1.0 × 10¹⁵ BIND-014 (missed clinical endpoints)
- 1.4 × 10¹⁵ Valoctocogene roxaparvovec (ineffective; phase II)
- 1.5×10^{15} Nanoparticle dosing threshold in humans
- 1.7 × 10¹⁵ Myocet (approved)
- 1.9 × 10¹⁵ Onivyde (approved)
- 4.2 × 10¹⁵ Valoctocogene roxaparvovec (effective; phase II)
- 8.6 × 10¹⁵ Doxil (approved)

ICANS

Toward antibody-nanoparticle conjugates?

Spoiler alert: Yes, but...

Carboxyic acid

The NP drives the pharmacokinetic and biodistribution profile of the conjugate

Key messages:

No differences in PK profile based on the size of the moiety No differences in major organ uptake based on the targeting moiety or the size of the NP

The NP material impacts the tumor uptake post-biofunctionalization

Regression coefficient

Mittelheisser et al. Adv Mat 2022

Development of ultrasmall gadolinium NPs

Development of ultrasmall gadolinium NPs

Subcutaneous PDAC

Orthotopic NSCLC

Clinical translation of gadolinium-based NPs

+++ Tumor uptake due to passive internalisation (EPR-effect)- Short tumor retention

Example of full-mAb NP functionalization through homobifunctional linker functionalization

• Improved MR sensitivity with NP-BCMA vs. FDA-/EMA-approved MRI contrast agents and non-targeted NPs

Example of full-mAb NP functionalization through homobifunctional linker functionalization

• PK of the anti-BCMA/NP is driven by the NP and not the mAbs

Example of full-mAb NP functionalization through homobifunctional linker functionalization

- Longitudinal tracking possible due to the lack of long-term retention and degradability of the NP
- 5% of the MM cells labelled with NP is enough for MR signal detection

23

Example of full-mAb NP functionalization through click chemistry approach

ICANS

• PK of the anti-BCMA/NP is driven by the

Full-mAb-NPs vs. ADC

Same amount of radiotracer injected (10 MBq)

- ~4x less mAb required with mAb-NP vs. ADC
- Improvement of the SNR
- Potential diminution of the toxicity in drug delivery
- Nanoparticle to antibody ratio = 1.1

Same amount of mAbs injected (4.2 mg/kg)

- ~4x more radiotracer injected with mAb-NP vs. ADC
- Increase tumor uptake signal (translation for drug delivery)
- Nanoparticle to antibody ratio = 1.1

Limitation of non-specific binding for NP studies and alternative solutions

Toward site-specific NP functionalization.

Applications of our E1-selective Ugi-conjugated trastuzumab T_{Ugi}

Conclusion

Classical ADCs Improved linkers for ADCs Antibody-conjugated NPs

• Require a specific target to be effective, and a rational selection of the therapeutic drug is necessary

• Optimization of the drug linker conjugation and DAR is needed for optimal release and therapeutic efficacy

 Antibody-conjugated NPs could improve ADC efficacy by either reducing toxicity (less amount to be injected for similar efficacy) or increasing efficacy (same amount of mAbs injected)

Acknowledgements

Nanotranslational lab (ICANS)

Sébastien Harlepp, MCU Adeline Gasser, Lab manager Sébastien Lambroni, Admin Mainak Banerjee, IR Chen Zhu, Postdoc fellow Sebastian Jung, Postdoc fellow Manon Courseyre, PhD student Julien Draussin, PhD student Vincent Mittelheisser, PhD studentTanushree Gupta Pedro Lopez, PhD student Elsa Barbe, M2 student Shayamita Ghosh, M2 student Xavier Pivot, PUPH Pierre Coliat, Pharmacist Lotfi Boudali, Clinical transfer liaison

Université de Lyon

Olivier Tillement François Lux

Université de Strasbourg

Loic Charbonnière Aline Nonat

Andrey Klymchenko

Dana-Farber Cancer Institute

Irene Ghobrial Mike Agius

alliance nationale

aviesor pour les sciences de la vie et de la santé

> interdisciplinaires de l'**Université** de Strasbourg

dans le cadre de l'Initiative d'excellence 🕥

Շ 🚥 Շ 🏨 İnserm

Funding agencies

European Research Council Established by the European Commission

European Research Council Established by the European Commission

ALLIANCE CLCC-CHU

Ensemble, vaincre le cancer.

Contact informations a.detappe@icans.eu www.detappelab.com

Nanoparticle selection is important, especially for immune-cell targeting applications

ICANS